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1. Introduction

Gauge theory solitons, like magnetic monopoles and cosmic strings, are predicted by Grand

Unified Theories (GUT). Their formation in the early universe has nontrivial implications

for the subsequent cosmological evolution [1, 2]. While the occurence of monopoles is

strongly limited by observations because they would dominate the energy density of the

universe, cosmic strings are still compatible with current data. They are no longer con-

sidered as the main seed of structure in the universe in favor of inflation, but they are

predicted by GUT and many inflation models.

In this paper we study BPS cosmic string solutions in the context of D = 4 N = 2

supergravity [18]. Supersymmetry plays an important role in todays attempts to unify

fundamental forces beyond the Standard Model. In a supersymmetric theory, BPS con-

figurations are those that preserve a fraction of the supersymmetries. They constitute

interesting probes of the high energy regime of the theory as they are usually protected

from quantum corrections. As supergravity theories are supersymmetric local field theories

of gravity, it is important to analyze their (BPS) solitonic solutions. The latter could have

non-trivial implications for the cosmology of supersymmetry theories. They could also

correspond to degrees of freedom of a more fundamental theory.

A particular class of BPS solutions has attracted a lot of attention recently: D-term

strings [3-18] They are Nielsen-Olesen string-like solutions of a D = 4 Abelian-Higgs model

coupled to N = 1 supergravity. The corresponding U(1) gauge symmetry is spontaneously

broken by the vacuum expectation value of a Higgs field. The Higgs mechanism is due

to the presence of a D-term potential endowed with a constant Fayet-Iliopoulos term (FI

term). D-term strings preserve half of the supersymmetries: they are half-BPS objects.1

Their tension saturate a topological bound, the Bogomolnyi bound.

D-term strings were first constructed in N = 1 global supersymmetry [3] and later they

were discussed again in [4]. Their coupling to N = 1 supergravity was first investigated

in [8] and also by [5 – 7] in the context of 3 dimensional supergravity. The interest in

D-term strings increased after the authors of [9] established that they are half-BPS in

N = 1 supergravity and conjectured that they represent the low energy manifestation of

fundamental objects in string theory called D-strings.2 The latter are D-branes with one

non-compact spatial dimension [20 – 24, 19]. Since then several string theory analyses have

appeared in the literature that support the conjecture [16, 29 – 32]. However they are also

indications of limitation of the conjecture.3

1It is also possible to construct half-BPS cosmic strings in N = 1 supergravity which are not of the

Nielsen-Olesen type. For example, the magnetic cosmic strings of [33] don’t require any Higgs fields, but

only a gauge field and a D-term endowed with a constant FI term.
2For a review of cosmic strings in superstring theory, see [25 – 27]. The possibility of having heterotic

cosmic strings have been discussed in [28].
3D-term strings are not expected to reproduce the scattering properties of D-strings. Indeed, gauge

theory solitons have a reconnection probability P ≈ 1, while the same quantity for D-strings has been

estimated to take values in the range 10−1 . P . 1 [25, 26]. The conjecture was based on the observation

that D-term strings were the only BPS saturated strings available in N = 1 supergravity. By now, other

BPS strings have been obtained with different stability behaviors. For example semilocal strings [13 – 16]
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As a D-term string requires a constant FI term, we are constrained to Abelian gauge

theories since FI terms are only allowed in this case. FI terms are also interesting in cosmol-

ogy aside from the study of topological defects. In the framework of N = 1 supergravity

they can be used to generate a positive cosmological constant, what leads to de Sitter vacua

and are crucial for D-term inflation [10].

So far, it has not been possible to identify a mechanism in string/M-theory leading

to a constant FI term in N = 1 supergravity after compactification. In order to identify

such a mechanism, it can be useful to work in N = 2 supergravity as an intermediate step.

Indeed, many compactifications of string theory lead to N = 2 supergravity in 4 space-time

dimensions. This is an invitation to identify the N = 2 supergravity actions which lead to

N = 1 supergravity with a D-term potential and a constant FI term.

In flat space, the embedding of D-term potential with a constant FI term into N = 2

global supersymmetry is well understood [34]. N = 2 global supersymmetry admits a

scalar potential that depends on a triplet of moment maps that generalize the D-term of

N = 1 susy. In flat space, the triplet of moment maps admits a triplet of FI terms that

generalize those of N = 1 susy.

The situation changes drastically when we consider the coupling to gravity. Indeed,

N = 2 supersymmetry forbids constant FI terms in the presence of hypermultiplets.4 At

first sight this seems to exclude a description of N = 1 D-term potential with constant FI

terms from N = 2 supergravity in presence of hypermultiplets. However, FI terms in N = 1

supergravity do not need to originate from FI terms in N = 2 supergravity. In particular

it is possible that a scalar potential in a N = 2 action, after truncating consistently part of

the fields, will correspond to an N = 1 potential with a D-term and a constant FI term.5

The first known example of a half-BPS cosmic string in N = 2 supergravity was

constructed in [18]. It involves the minimal matter content needed to obtain a half-BPS

cosmic string solution in N = 2 supergravity action: one hypermultiplet and one vector

multiplet.6 The construction of [18] can be seen as a consistent embedding of an N = 1

half-BPS cosmic string into N = 2 supergravity while preserving the half-BPS nature of

the object.

It is useful to recall some aspects of N = 2 supergravity in order to understand the

construction of [18] and the purpose of the present paper.

The scalar fields in N = 2 supergravity can be seen as coordinates of a scalar manifold

M = MV ⊗ MH ,

where MV and MH correspond respectively to the scalar fields of vector multiplets and

hypermultiplets. The constraints coming from supersymmetry can then be understood as

and axionic D-term strings [12, 17] have a core radius that can vary in size, a property that is not generally

expected for D-strings.
4As we shall review later on, this is due to a topological obstruction coming from the geometry of

hypermultiplets in N = 2 supergravity [34, 45]
5An action is said to be consistently truncated to a reduced action, when any solution of the equations

of motion of the reduced action is also a solution of the full action.
6The hypermultiplet had to be included to provide the scalar acting as a Higgs field since, for Abelian

gauging, supersymmetry forbids the scalars of vector multiplets to be charged under gauge transformations.
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geometric conditions on the scalar manifold M . N = 2 supergravity requires MV to be a

Special-Kähler and MH to be of Quaternionic-Kähler type.

The kinetic terms of the scalar fields are defined by a sigma model with target space

the scalar manifold M. In order to respect supersymmetry, all internal symmetries of the

theory have to preserve the kinetic terms of the scalar fields and therefore correspond to

isometries of the scalar manifold. When a group of these internal symmetries is promoted

to be local group by letting the transformation parameters of the symmetries to depend on

spacetime, it is said that the symmetry group has been gauged. A gauging introduces new

couplings between scalar and gauge fields coming from the usual minimal coupling which

consists of replacement of derivatives by covariant derivatives. When a supergravity theory

is gauged, more couplings have to be included in the action to preserve supersymmetry.

In particular, the supersymmetry transformations of the fermions are modified by the so-

called fermionic shifts that also play the role of mass matrices for the fermions. In N = 2

supergravity, a gauging also requires the introduction of a scalar potential quadratic in the

fermionic shifts.

In N = 1 supergravity, the D-term corresponds to the part of the scalar potential

generated by a gauging whereas the F -term is due to a superpotential. The D-terms are

fermionic shifts for the gaugini. The superpotential gives masses to the gravitino and the

chiral fermions. In N = 2 supergravity (like in all extended supergravity theories), gauging

is the only way to generate a scalar potential.7

In the present paper we shall only be concerned with Abelian gauging. When con-

sidering Abelian gauging, only the isometries of the quaternionic-Kähler manifold MH are

relevant as the scalar fields of the special manifold MV , being part of vector multiplets,

are neutral under Abelian symmetries. A gauging of isometries of the quaternionic-Kähler

manifold MH contributes to the fermionic shifts through the Killing vectors representing

the isometries and a triplet of so-called moment-maps.

In [18], after choosing the scalar manifold M, a specific compact U(1) symmetry of the

quaternionic manifold was gauged to generate a scalar potential. The ansatz for the cosmic

string solution used only a subset of the fields in such a way that the solution was also

valid for an N = 1 supergravity model coupled to one vector fields and one chiral multiplet.

In other words, the cosmic string ansatz is compatible with a consistent truncation of the

theory to N = 1 supergravity. However, supersymmetry is not spontaneously broken to

N = 1 supergravity and the full N = 2 supersymmetry is preserved in the vacuum at

spatial infinity. From a N = 2 point of view, the use of an ansatz related to a consistent

truncation to N = 1 supergravity in [18] is not required but is useful to simplify the

calculation, as N = 2 BPS equations are in general much more difficult to solve than

those of N = 1 theories. Alternatively, one can consider that the construction of [18] is a

consistent embedding of a cosmic string solutions of an N = 1 supergravity model into an

N = 2 supergravity model while preserving the BPS property of the solution. Consistent

truncations of N = 2 supergravity are studied systematically in [46 – 48].

7When hypermultiplets are not present, it is possible to include a triplet of N = 2 constant Fayet-

Iliopoulos term without any gauging.
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The bosonic part of the reduced N = 1 action of [18] is

e−1L =
1

2
R − 1

4
FµνFµν − 1

2(Im Φ)2
∇µΦ∇µΦ̄ − 2g2

[ |Φ|2 + 1

Im Φ
− ξ

]2

,

where Fµν = ∂µWν − ∂νWµ, ∇µΦ = ∂µΦ − 2gWµ

(

Φ2 + 1
)

. There is no superpotential,

the kinetic tem of the vector fields has a trivial metric and the D-term is D = |Φ|2+1
Im Φ − ξ,

where ξ is the FI term.

The main purpose of the present paper is to enlarge the type of N = 2 supergravity

theories that can generate constant FI term in N = 1 supergravity. The generalization

to other quaternionic manifolds that are symmetric spaces is straightforward. However,

the special geometry was a very particular case. In N = 2 supergravity, special geometry

determines the couplings of the vector fields of the theory. The special geometry used

in [18] corresponds to the so-called minimal special geometry.

In special geometry, the scalar manifold is a Kähler-Hodge manifold.8 However, the

Kahler potential K is not the fundamental object. It is computed in terms of a so-called

symplectic section (ZI , FI) as

K = − log
[

−i
(

ZI F̄I − FI Z̄
I
)]

.

where I = 0, . . . , nV and nV is the number of vector multiplets. The section depends on

the scalar fields of the vector multiplets.

The symplectic section is subject to symplectic transformations. The latter are not

symmetries of the Lagrangian but of the equations of motion and Bianchi identities of

the vector fields. The Kähler potential is also a symplectic invariant and therefore the

geometry of the special manifold is invariant under symplectic rotations. However, the

scalar potential and the metric of the kinetic term of the vector fields are not invariant

under symplectic rotations.

A symplectic section is said to admit a prepotential when it is possible to define an

holomorphic function F (Z) depending only on the first half of the symplectic section such

that

FI =
∂

∂ZI
F.

F (ZI) is called the prepotential and is required to be homogeneous of order two (that is

F (λZ) = λ2F (Z), for any complex λ). It is always possible to rotate a given symplectic

section into one that admits a prepotential [35]. It follows that prepotentials provide a

simple way to classify families of special geometries. Such a classification is enough to

discuss aspects of special geometry that are invariant under symplectic rotations like for

example the geometry of the special manifold. However, more generally, the prepotential

is not enough to distinguish two physically different supergravity theories once the theory

is gauged. For example, spontaneous supersymmetry breaking to N = 1 supersymmetry

8A Kähler-Hodge manifold is a Kähler manifold with a Kähler form defining an integer cohomology. In

N = 1 supergravity, the scalar manifold can be any Kähler-Hodge manifold. For a special Kähler-manifold,

the Kähler two-form has an even integer cohomology.
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is only possible when the symplectic section does not admit a prepotential [36]. Moreover,

as the scalar potential is not a symplectic invariant in N = 2 supergravity, the stability

of vacua can be modified by a symplectic rotation as illustrated in the study of de Sitter

vacua in [37].

Minimal special geometry corresponds to a quadratic prepotential F :

F (Z) = − i

2
(Z0Z0 − ZaZa), a = 1, . . . , nV .

This is the so-called minimal prepotential and the corresponding special manifold is
SU(1,nV )
U(nV ) .

Minimal special geometry has many virtues which makes it an interesting candidate to

construct cosmic string solutions. In particular, all the scalar fields of the special manifold

can be consistently truncated on the string configuration, in such a way that the string

solution is based on the minimal amount of matter field required: one vector field and one

scalar field. The metric of the kinetic terms of the vector fields is then trivial.

To enlarge the family of supergravity models related to N = 1 supergravity with a

D-term, and admitting a constant FI term, we shall study the mechanism described in [18]

with a special geometry that is related to a cubic prepotential :

F = idIJK
ZIZJZK

Z0
, I, J,K = 1, . . . , nV ,

where dIJK are real constant coefficients symmetric in their three indices.

Realizing the construction of [18] with a special geometry related to a cubic prepotential

is a natural direction for generalization in view of all the interesting models that require

this type of special geometry. Cubic prepotentials are classified in [52]. They characterize

the N = 2, D = 4 supergravity theories coming from N = 2, D = 5 supergravity theories.

They are also the special geometry of many compactifications of string theory like for

example type II string theories compactified on Calabi-Yau three-folds [45, 49, 35] and the

Heterotic string compactification on K3×T 2 [45, 49, 50] and the D3−D7 model (type IIB

on K3 × T 2/Z2 in presence of open string moduli) [38 – 40]. As we shall see, the change

of the symplectic section will imply important differences in the qualitative behaviour of

the resulting cosmic string solution. Our choice of special geometry will contain an axion-

dilaton field S = a − ieρ parametrizing the Kähler manifold SU(1,1)

U(1) = SO(2,1)
SO(2) = SL(2,R)

SO(2)

which corresponds to the complex half-plane.

We will consider the special geometry based on the coset space

MV = ST [2, n] ≡ SU(1, 1)

U(1)
× SO(2, n)

SO(2) × SO(n)
,

with the so-called Calabi-Vesentini symplectic section [45, 49] well-known from different

compactifications of string theory [38, 39].

On the quaternionic side, the analysis can be done with any normal quaternionic

manifold. To avoid complications that are not essential to the construction, we shall

consider the quaternionic manifold of (quaternionic) dimension one MH = SO(4,1)
SO(4) . The

– 6 –
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model is then simple enough to be analyzed in detail and our results can be compared with

those of [18].

We perform the same compact Abelian gauging as in [18] and use a consistent trunca-

tion ansatz to obtain cosmic string solutions. The reduced theory is an N = 1 supergravity

coupled to a vector multiplet and two chiral multiplets corresponding to the axion-dilaton

and Higgs fields.

We shall see that with the choice of the Calabi-Vesentini symplectic section, the N = 2

scalar potential is bounded from below as long as we gauge a vector of negative signature

with respect to the metric ηIJ used to define the Calabi-Vesentini basis. In the case of

minimal special geometry it was possible to truncate all the scalar fields of the vector

multiplets on the string configuration.

The bosonic part of the truncated N = 1 action, as defined above, is:

e−1L =
1

2
R +

1

4
(Im S)FµνFµν +

e−1

8
(Re S)εµνρσFµνFρσ

− 1

4(Im S)2
∂µS∂µS̄ − 1

2(Im Φ)2
∇µΦ∇µΦ̄ +

2g2

ImS

[ |Φ|2 + 1

ImΦ
− ξ

]2

,

where Fµν = ∂µWν−∂νWµ, ∇µΦ = ∂µΦ−2gWµ

(

Φ2 + 1
)

. The holomorphic function that

defines the kinetic term of the vector field is f = iS where S = a− ieρ is the axion-dilaton

field. The Kähler-Hodge manifold is
(

SO(2, 2)

SO(2) × SO(2)

)

S,Φ

=

(

SU(1, 1)

U(1)

)

S

×
(

SU(1, 1)

U(1)

)

Φ

,

Each of the two complex scalar fields (S and Φ) parametrize a SU(1,1)
U(1) factor. The Kähler-

potential is K = − log
[

i(S − S̄)
]

− 2 log
[

−i(Φ − Φ̄)
]

. There is no superpotential and the

D-term is D = |Φ|2+1
Im Φ − ξ, where ξ is the FI term.The gauge symmetry is δΦ = 2g(Φ2 + 1).

We shall show that it is possible to obtain half-BPS cosmic string solutions which

solve the full N = 2 equations of motion. These string solutions are defined in the absolute

minimum of the potential, which is of Minkowksi type and preserves the full N = 2

supersymmetry.

The N = 2 BPS equations imply that the axion-dilaton is an arbitrary constant. For

a fixed winding number, we shall show that all the half-BPS solutions with different values

of the dilaton have the same energy per unit length.

Solutions with different value of the dilaton can be distinguishable by their character-

istic length scales. Indeed, the masses of the fields that define the string solution, mW for

the vector and mΦ for the scalar, depend explicitly on the dilaton field:

1

m2
W

≡ l2W ∝ − Im S = eρ,
1

m2
Φ

≡ l2Φ ∝ − Im S = eρ.

As a consequence we obtain a one parameter family of string solutions, degenerate in energy

but with varying core radius.

The structure of the paper is the following. In section 2 we review the mathematical

tools needed for N = 2 supergravity: special and quaternionic geometry, the gauging of

– 7 –
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isometries and the N = 2 supersymmetry transformations. At the end of the same section

we also discuss consistent reduction of supersymmetry, and we explain how the constant

FI term is obtained in the reduced N = 1 supergravity model. In section 3 our model

is presented. We give the choice of special and quaternionic geometry together with the

gauging, which determines the scalar potential. In section 4 we study the vacua of the

potential and the N = 1 reduced theory is presented. Next, we construct the string ansatz

and we solve the BPS equations. At the end of this section some of the properties of the

string are discussed. Finally we review our results in section 5.

2. Review of N = 2 supergravity

2.1 Overview

In D = 4 dimensional spacetime with Minkowski signature, the supersymmetry generators

are Majorana spinors. A Majorana spinor admits four degrees of freedom and can be

decomposed into two chiral spinors of opposite chirality. In four dimensional spacetime, a

N extended supersymmetric theory admits 4N supersymmetric generators organized into

N Majorana spinors. N = 2 supersymmetry requires two Majorana spinors that represent

a total of 8 independent supersymmetry generators. We shall work with the corresponding

four chiral spinors that we denote (εi, εi). The index i = 1, 2 labels the original Majorana

spinors and the position of that index represents the chirality. εi is a left-handed spinors

while εi is right-handed:

εi =
1

2
(1 + γ5)ε

i, εi =
1

2
(1 − γ5)εi. (2.1)

We follow the notation and conventions of [41, 42]. Charge conjugation relates the two

chiral projections of a given Majorana spinor. We shall use the same convention for other

chiral spinors.

2.1.1 Supersymmetry and geometry

The scalar fields present in supersymmetric multiplets can be seen locally as coordinates

of a manifold, (the scalar manifold M), whose geometry is restricted by supersymmetry.

The latter splits into a direct product of scalar manifolds corresponding to different types

of multiplets present in the theory.

When there is an action, the kinetic terms of the scalar fields φr define a sigma model

with target space the scalar manifold M

Lφ, kinetic = −1

2
grs(φ)∂µφr∂µφs. (2.2)

As we have said before, the scalar fields φr can be seen as local coordinates of the scalar

manifold M. From this point of view, grs(φ) is interpreted as a metric defined on M. Thus

the scalar manifold M has the structure of a Riemannian space.

The supersymmetry transformations will involve a vielbein on the scalar manifold

M. The reality conditions due to the type of spinors that are used, the R-symmetry and

– 8 –
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vielbein ea
µ

Gravity multiplet gravitini ψi
µ, ψiµ

i = 1, 2

µ, a = 0, · · · , 3

graviphoton “W 0
µ”

gauge fields W α
µ

Vector multiplet gaugini λα
i , λi

α α = 1, . . . , nV

scalars zα

hyperscalars qX

Hypermultiplets
X = 1, . . . , 4nH

A = 1, . . . , 2nH

hyperini ζA, ζA

Table 1: Field content of N = 2 supergravity coupled to nV vector multiplets and nH hyper-

multiplets. The physical graviphoton is not necessarily W 0
µ but whatever field appears in the

supersymmetric transformation of the gravitini through its field strength Tµν . The latter is a linear

combination of field strengths of all the gauge fields W I
µ present in the theory (I = 0, . . . , nV ) with

coefficients that depend on the scalar fields zα of vector multiplets. The couplings of all the gauge

fields W I
µ and the scalar fields zα is controlled by special geometry.

the closure of the supersymmetry algebra will impose restrictions on the vielbein. These

restrictions will be understood as geometric conditions on the scalar manifold.

In N = 2 supergravity coupled to nV vector multiplets and nH hypermultiplets, the

scalar manifold is a direct product

M = MV ⊗ MH , (2.3)

where MV and MH are respectively the scalar manifold of vector and hypermultiplets. The

restrictions coming from supersymmetry impose that MV is a so-called special manifold,

whereas MH is a quaternionic manifold.

The field content of a N = 2 supergravity theory coupled to nH hypermultiplets and

nV vector multiplets is displayed in table 2.1, where we also fix our notation.

For convenience, the N = 2 supersymmetry transformations will be reviewed later on,

after the geometry of the scalar manifold and the gauging of isometries have been discussed.

2.2 Vector multiplets and special geometry

We consider N = 2 supergravity coupled to nV vector multiplets [60, 61, 50]. For a modern

review, see [45, 35, 51].

Since the gravity multiplet contains a vector field, the graviphoton, this theory admits

nV + 1 vector fields W I
µ where I = 0, . . . , nV . The nV vector multiplets contain as well nV

complex scalar fields zα, α = 1, . . . , nV parametrizing a Kähler manifold.

– 9 –
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The kinetic terms of the scalar and vector fields are:

e−1Lvector =
1

4
Im(N )IJF IµνF J

µν − 1

8
e−1 Re(N )IJ εµνρσF I

µνF J
ρσ − gαβ̄∂µzα∂µz̄β̄ ,

=
1

2
Im

(

NIJF+I
µν F+µνJ

)

− gαβ̄∂µzα∂µz̄β̄ , (2.4)

where F±I
µν is the self-dual combination:9

F±I
µν =

1

2

(

F I
µν ∓ 1

2
ieεµνρσF Iρσ

)

, F I
µν = ∂µW I

ν − ∂νW I
µ . (2.5)

The matrix NIJ is a function of the scalar fields zα. Its real and imaginary parts gen-

eralize the inverse of the coupling constant and the θ-parameter familiar from the Abelian

gauge theory:

e−1L = − 1

4g2
FµνFµν + e−1θεµνρσFµνFρσ. (2.6)

The couplings of vector multiplets to N = 2 supergravity are elegantly expressed by special

geometry. The latter relies heavily on the existence of duality transformations for vector

fields in supersymmetric theories. Duality transformations generalize the electric-magnetic

duality of Maxwell’s equations without sources.

The coupling matrix NIJ undergoes the following fractional transformation:

N =⇒ (C + DN )(A + BN )−1, (2.7)

under a duality transformation given by a general invertible linear operator S =

(

A B

C D

)

∈

Sp(2nV + 2, R) where A,B,C,D are (nV + 1) × (nV + 1) real matrices.

The action of the duality transformations on the scalar fields is much more transpar-

ent once we introduce a symplectic section which depends on the scalar fields of vector

multiplets and transforms linearly under symplectic rotations. Special geometry can be

completely defined in terms of this symplectic section.

The symplectic section is given by:

v =

(

ZI

FI

)

, I = 0, · · · nV (2.8)

and is endowed with a symplectic scalar product

〈v|v̄〉 = −vT

(

0n − n

n 0n

)

v̄. (2.9)

Here ZI and FI are functions of the coordinates zα (α = 1, . . . , nV ) of the scalar fields of

the vector multiplets. Recall that the index I runs from 0 to nV where nV is the number

of vector multiplets whereas α = 1, . . . , nV because the graviphoton that appears in the

9In our convention the Levi-Civita tensor satisfies ε0123 = 1.
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graviton multiplet is not related to any scalar fields. This is compensated by the freedom

to re-scale the symplectic section: the symplectic section is a projective section.

Symplectic rotations act linearly on the symplectic section as:

(

ZI

FI

)

=⇒ S
(

ZI

FI

)

. (2.10)

A special manifold is a Kähler manifold in which the Kähler potential is not a funda-

mental quantity but is given by the following symplectic invariant expression:

K = − log (−i〈v|v̄〉) = − log
[

−i
(

ZIF̄I − FI Z̄
I
)]

. (2.11)

Here we see that the freedom to re-scale the symplectic section corresponds to a Kähler

transformations.

In special geometry, the kinetic terms of both scalar and vector fields are computed

from the symplectic section as follow

gαβ̄ = ∂α∂β̄K(z, z̄) = i〈Dαv|Dβ̄ v̄〉, NIJ ≡
(

FI D̄ᾱF̄I

) (

ZJ D̄ᾱZ̄J
)−1

. (2.12)

Here the covariant derivatives are defined by

Dαv = ∂αv + (∂αK)v, Dᾱv̄ = ∂ᾱv̄ + (∂ᾱK)v̄. (2.13)

When the theory is gauged, the electric-magnetic duality is explicitly broken by the

introduction of electric charges. In particular, the scalar potential generated by the gauging

is not symplectic invariant.

2.2.1 Special geometry and prepotentials

A special geometry is said to admit a prepotential when the lower component of the sym-

plectic section (the variable FI) can be expressed as derivative of a scalar function F (Z)

depending only on the upper part of the symplectic section ( ZI):

FI =
∂

∂ZI
F (Z). (2.14)

F (Z) is restricted to be an homogeneous function of second degree in the ZI fields and is

called the prepotential.

Although prepotentials are not necessary to define special geometry, they provide a

handy way to classify special manifolds as any symplectic section can be rotated to a section

admitting a prepotential [35]. If one is interested only in symplectic invariant quantities,

working only with prepotential is not a restriction. This is a practical approach to the

classification of special geometry when we consider only the Riemannian geometry defined

by the scalar fields as the Kähler potential, the metric and the Riemann tensor are all

symplectic invariant.
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2.2.2 Minimal and very special geometry

Minimal special geometries correspond to quadratic prepotential defined with a metric

ηIJ of signature (1, n):

F (Z) = −iZIηIJZJ , ηIJ =

(

1 01×n

0n×1 − n

)

, (2.15)

called the minimal prepotential. The corresponding special manifold is SU(1,n)
U(1) SU(n) .

Very special Kähler geometries are characterized by cubic prepotentials

F (Z) = idIJK
ZIZJZK

Z0
, (2.16)

where dIJK is a real symmetric tensor.

Very special Kähler geometries can be obtained by dimensional reduction from 5 di-

mensional supergravity theories and are known to admit flat potentials. They are also

familiar in string theory where they occur in many different compactifications as for exam-

ple in toroidal compactifications of the heterotic string with possible Wilson lines [45], in

compactifications of type II string theories on Calabi-Yau threefolds, in compactification

of type II string theories on orientifolds like K3 × T 2/Z2 in the presence of D3 and D7

branes [38, 39].

Although unusual, minimal special geometry is not incompatible with string theory.

To the best of our knowledge, there is so far only one case in which it occurs in string

theory [54]. This are the N = 2 vacua coming from the N = 3 flux compactification on

T 6/Z2 studied by Frey and Polchinski [55].

In N = 2 compactifications of string theory, it is important for phenomenological

reasons to be able to perform a partial spontaneous supersymmetry breaking to N = 1.

As partial supersymmetry breaking is only possible with symplectic sections that do not

admit a prepotential [36], minimal and very special geometries usually occur in these types

of sections that are related to a prepotential only after a symplectic rotation.

A classification of special manifolds was presented by Cremmer and van Proeyen in [53].

We shall provide some examples to illustrate some subtleties of special geometry. The

first example illustrates that the same manifold can be endowed with different types of

special geometries. This is the content of table 2, where we review the case of the symmetric

space SU(1,1)
U(1) which is a Kähler manifold of complex dimension one.

The second example [51] present a symplectic section that is not derived from a pre-

potential. It is obtained by a symplectic rotation from a minimal special geometry. It will

also illustrate how a symplectic section can modify the kinetic terms of the vector fields.

Let us consider the minimal prepotential F = −iZ0Z1.10 The corresponding symplec-

10This is related to the usual prepotential of minimal special geometry F = i(Z0Z0 − Z1Z1) = −i(Z0 +

Z1)(Z0 − Z1) by the redefinitions Z0 =⇒ Z0 + Z1 and Z1 =⇒ Z0 − Z1.
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Prepotential Symmetric space

F (X) = −i[(X0)2 − (X1)2] SU(1,1)
U(1)

F (X) = i (X
1)3

X0

SU(1,1)

U(1)

F (X) = −4
√

X0(X1)3 SU(1,1)
U(1)

Table 2: In this table, all three special manifolds correspond to the same coset space SU(1,1)

U(1) . The

first one admits a quadratic prepotential and therefore corresponds to the minimal special geometry.

The second one is a very special manifold as it admits a cubic prepotential. The last one is related

to the second one by a symplectic rotation [51, 53].

tic section is

v =











Z0

Z1

−iZ0

−iZ1











=











1

z

−iz

−i











, z =
Z1

Z0
. (2.17)

The Kähler potential is K = − log 2(z + z̄). The kinetic matrix for the vector is

N =

(

−iz 0

0 − i
z

)

. (2.18)

The bosonic part of the N = 2 supergravity coupled to a vector multiplet with a

special geometry defined by the previous symplectic section is

e−1Lbosonic =
1

2
R +

∂µz∂µz̄

(z + z̄)2
− 1

2
Re

[

z(F+0
µν )2 + z−1(F+1

µν )2
]

. (2.19)

After a symplectic rotation with S =











1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0











we have

ṽ = Sv =











1

i

−iz

z











, Ñ =

(

iz 0

0 −iz

)

. (2.20)

The new symplectic section cannot be derived from a prepotential as the upper part of the

section does not even have a dependence on the scalar field z. The bosonic part of the

action after the symplectic rotation is

e−1L̃bosonic =
1

2
R +

∂µz∂µz̄

(z + z̄)2
− 1

2
Re

[

z(F+0
µν )2 + z(F+1

µν )2
]

. (2.21)
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2.3 Hypermultiplets and quaternionic-Kähler geometry

In four dimensional spacetime with the usual Minkowski signature, an hypermultiplet is

composed of four real scalar fields and two Majorana spinors. As a Majorana spinor can

be decomposed into two chiral spinors of opposite chirality, one can describe nH hypermul-

tiplets in terms of 4nH real scalar fields qX (X = 1, · · · , 4nH) and 2nH chiral spinors ζA

(A = 1, . . . , 2nH) of positive chirality and 2nH chiral spinors ζA of negative chirality. The

spinors (ζA, ζA) of hypermultiplets are called the hyperini and the 4nH real scalar fields

qX are the hyperscalars. The latter can be seen locally as coordinates of a scalar manifold

MH which is constrained by N = 2 supersymmetry to be a quaternionic manifold [43].11

It follows that locally, the 4nH hyperscalar fields can be seen as nH quaternions.12

If the N = 2 supersymmetric theory admits an action, the scalar fields qX define a

sigma model with target space the hyperscalar manifold MH which is required to be a

Riemannian space with metric gXY :

e−1Lhyper = −1

2
gXY ∇µqX∇µqY . (2.22)

We will denote the quaternionic vielbein by f iA
X . The metric gXY is computed from the

vielbein as

gXY = f iA
X fY iA, (2.23)

where fY iA = (f iA
Y )∗.

Later, when considering the supersymmetry transformations we will also find the tensor

fX
iA, which is the inverse of f iA

X as a 4nH × 4nH matrix:

f iA
Y fX

iA = δY
X , f iA

X fX
jB = δi

jδ
A
B . (2.24)

The holonomy of the scalar manifold can be checked to be contained in Sp(1)⊗Sp(nH).

Thus, the scalar manifold of hypermultiplets is by definition a quaternionic-Kähler mani-

fold.

We can define a triplet Jx (x = 1, 2, 3) of complex structures:

(Jx)X
Y = if iA

X (σx)i
jfY

jA (2.25)

which satisfy the multiplication table of quaternionic units

JxJy = −δxy
4nH

+ εxyzJz, (2.26)

and are covariantly constant

∇Jx ≡ ∇LCJx + 2εxyzωyJz = 0, (2.27)

11For a review of quaterionic geometry see [44, 45, 62]. In particular, we shall use the conventions of

appendix B of [62].
12The set of quaternions is defined by H = {q01 + q1i + q2j + q3k|qi ∈ R}, with the elements of the

basis satisfying i.j = k, together with all cyclic permutations and i2 = j2 = k2 = −1. A quaternion

can be represented by a 2 × 2 matrix as the imaginary quaternions can be represented by (i, j, k) =

(−iσ1,−iσ2,−iσ3) and therefore we can write q = q0 − iqxσx.
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where ∇LC is the Levi-Civita covariant derivative for the metric gXY , and ωx is an SU(2)

connection.

Any real linear combination J = axJx defines a complex structure (J2 = − ) if

||~a||2 = (a1)
2 + (a2)

2 + (a3)
2 = 1. (2.28)

It follows that at each point of the manifold there is a sphere of complex structures. Two

such complex structures are related by an SU(2) rotation. A quaternionic structure is the

space of all these complex structures axJx. It is globally well defined although this is not

necessary the case of an individual complex structure J = axJx as the SU(2) bundle is

non-trivial.

A quaternionic-Kähler manifold is an Einstein space and the quaternionic structure

Jx
XY is proportional to the SU(2) curvature Rx ≡ dωx + εxyzωyωz:

RXY =
1

4nH
gXY R, Rx

XY =
1

2
νJx

XY , ν =
1

4nH(nH + 2)
R. (2.29)

In N = 2 supergravity, the constant ν is proportional to the gravity coupling constant

ν = −κ2. We work in units in which κ = 1, that is ν = −1.

In flat space, the supersymmetry generators are globally defined and therefore the

SU(2) bundle is trivial and the holonomy is contained in Sp(nH) and MH is an hyperkähler

manifold. An hyperKähler manifold can be seen as a quaternionic-Kähler manifold with a

trivial Sp(1) bundle so that the Sp(1)-curvature vanishes Rx = 0.

The Sp(1) ' SU(2) and Sp(nH) bundles can be understood geometrically as follows:

SU(2) corresponds to the R-symmetry group that rotates the supersymmetry generators

while Sp(nH) is the space of linear transformations of nH hypermultiplets that preserve

the metric of the scalar fields. It also acts on the hyperscalars qX and the hyperini.

The non-triviality of the SU(2) ' Sp(1) bundle in N = 2 supergravity is responsible

for the non-existence of FI terms but, ironically, it is also the main instrument to construct

N = 2 supergravity potentials that are compatible with N = 1 supergravity with D-term

endowed with constant FI term as we shall review shortly.

2.4 Isometries, gauging and scalar potential

In N = 2 supergravity coupled to vector multiplets and hypermultiplets, the only way to

generate a scalar potential is to promote some of the symmetries of the scalar manifold to

be local symmetries. This implies a choice of the Killing vectors of the scalar manifolds

and a choice of vector fields that will be used as gauge fields in the covariant derivatives.

In this paper we only consider Abelian gauging of the symmetries of MH . The gauged

symmetry is defined by the transformation with parameters αI :

δGqX = −gαIkX
I , (2.30)

where kX
I are the Killing vectors that we will gauge with the vector fields W I

µ . To gauge a

symmetry all the derivatives of the hyperscalars have to be extended to covariant deriva-

tives. The gauge field is taken from the vector multiplets:

∇µqX = ∂µqX + gW I
µkX

I . (2.31)
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A gauging generates a deformation of the supersymmetry transformations by fermionic

shifts Sij , Nα
ij and N iA:

δψi
µ = · · · − gγµSijεj, (2.32)

δλα
i = · · · + gNα

ijε
j, (2.33)

δζA = · · · + gN iAεijε
j . (2.34)

These fermionic shifts also contribute to fermionic mass terms in the Lagrangian:

e−1Lψmass = −gSijψ̄µiγ
µνψνj +

1

2
ggαβ̄Nα

ijλ̄
β̄iγµψj

µ + 2gN iAεij ζ̄Aγµψj
µ + h.c (2.35)

Finally, in order to preserve supersymmetry of the action, the previous mass terms

should be balanced by the following scalar potential quadratic in the fermionic shifts:

g−2V =
1

2
gαβ̄Nα

ijN
β̄ij + 2N iANiA − 6SijSij . (2.36)

The invariance of the action under supersymmetric transformations implies that the

fermionic shifts are given by:

Sij ≡ −Pij
I XI , Nα

ij ≡ εijk
α
I X̄I − 2PIij f̄

I
β̄gαβ̄ , N iA ≡ −if iA

X kX
I X̄I , (2.37)

where Pij
I = Px

I (iσx)ij and PIij = Px
I (iσx)ij are the moment maps [44, 45, 62] related to

the Killing vectors kX
I of the quaternionic-Kähler manifold and kα

I are the Killing vectors

of the special manifold. Taking into account the relations (2.37), the scalar potential reads

g−2V =
1

2
gαβ̄Nα

ijN
β̄ij + 2N iANiA − 6SijSij,

= (gαβ̄kα
I kβ̄

J + 2gXY kX
I kY

J )X̄IXJ + 4
(

U IJ − 3X̄IXJ
)

Px
I Px

J . (2.38)

We also have

U IJ ≡ gαβ̄f I
αfJ

β̄ = −1

2
(Im N )−1|IJ − X̄IXJ , f I

α ≡
(

∂α +
1

2
∂αK

)

XI , XI = e
K
2 ZI .

(2.39)

As the scalar fields of vector multiplets transform in the adjont representation of the gauge

group, the Killing vectors kα
J , kᾱJ of the special manifold vanish for Abelian gauging. In

particular, the sector (4gαβ̄kα
I kβ̄

J X̄IXJ) of the scalar potential is not present for Abelian

gauging.

2.4.1 Moment map and Fayet-Iliopoulos terms in N = 2 supergravity

The moment map Px
I appearing in the fermionic shifts and the scalar potentials is defined

as a solution of the following equation [44, 45, 62]:

1

2
kX

I Jx
XY dqY = ∇Y Px

I , where ∇Px
I = dPx

I + 2εxyzωyPz
I . (2.40)
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In rigid N = 2 supersymmetry, the SU(2) curvature of the quaternionic manifold is

trivial. The equation defining the moment map is then

1

2
kX

I Jx
XY = ∂Y Px

I . (2.41)

In flat space, as the moment map is covered by a total derivative in its defining equation,

it is determined only modulo an arbitrary triplet ξx of real constants:

Px
I ∼ Px

I + ξx
I . (2.42)

These constants ξx are the N = 2 Fayet-Iliopoulos terms.

In local N = 2 supersymetry, due to the non-trivial SU(2) connection, the triplet

moment maps cannot be shifted by arbitrary constants and there are only Fayet-Iliopoulos

terms when nH = 0, that is when there are no hypermultiplets.

Indeed, as the SU(2) bundle is non-trivial, the moment maps are uniquely defined by

4nHPx
I = −Jx

Y Z∇ZkY
I , (2.43)

thanks to the identity satisfied by any moment map Px
I [56]:

∇u∇uPx
I = 2nHPx

I . (2.44)

The uniqueness of Px
I implies in particular that the following equation

∇Ax = 0, (2.45)

has no nontrivial solutions. Otherwise, Px
I + Ax would be another solutions of equa-

tion (2.40). Moreover, if there is a non-trivial solution, the integrability condition

[∇u,∇v]A
x = 0 implies that the SU(2) curvature vanishes and therefore that the SU(2)

bundle is trivial. This is clearly not the case for a quaternionic-Kähler manifold.

The moment map can also be described in another way. A Killing vector preserves the

connection ωx and Kähler two forms Jx only modulo an SU(2) rotation. Denoting by LI

the Lie derivative with respect to kI , we have

LIω
x = −1

2
∇rx

I , (2.46)

or in terms of Jx

LIJ
x = εxyzry

I Jz, (2.47)

Here rx
I is known as an SU(2) compensator. The SU(2)-bundle of a quaternionic

manifold is non-trivial and therefore it is impossible to get rid of the compensator rx
I by

a redefinition of the SU(2) connections.13 The moment map can be expressed in terms of

the triplet of connections ωx and the compensator rx
I in the following way [44]:

Px
I =

1

2
rx
I + ιIω

x, (2.48)

where ιI is an interior derivative with respect to kX
I (ιIω

x = kY
I ωx

Y ).

13Again, this is in contrast with N = 2 rigid supersymmetry, since hyper-Kähler manifolds have a trivial

SU(2) bundle, and therefore no compensator.
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2.5 N = 2 Supersymmetry transformations

The supersymmetry transformations will be used later on to obtain the BPS equations for

the string configuration.

The supersymmetry transformations involve the geometrical objects that we just dis-

cussed: the moment map, the Killing vectors and the metric of the scalar manifold.

The bosons transform as

δea
µ =

1

2
ε̄iγaψµi +

1

2
ε̄iγ

aψi
µ,

δW I
µ =

1

2
(DαXI)εij ε̄iγµλα

j +
1

2
(DᾱX̄I)εij ε̄

iγµλᾱj + εij ε̄iψµjX
I + εij ε̄

iψj
µX̄I ,

δzα =
1

2
ε̄iλα

i ,

δqX = −ifX
iAε̄iζA + ifXiAε̄iζA. (2.49)

Here we have used the following definitions:

εij = iσ2 εijε
kj = δk

i and ε̄i = (εi)†γ0 (2.50)

For a bosonic configuration, the N = 2 supersymmetry transformations of the left-

handed fermionic fields are:

δψi
µ = ∇µ(ω)εi +

1

4
γρσT−

ρσεijγµεj − gγµSijεj ,

δλα
i = /∇zαεi −

1

2
gαβ̄Dβ̄X̄I ImNIJF−J

µν γµνεijε
j + gNα

ijε
j,

δζA =
1

2
ifAi

X /∇qXεi + gN iAεijε
j . (2.51)

The fermionic shifts (Sij , Nα
ij and N iA) are given in equation (2.37). The associated

scalar potential is presented in equation (2.38). The covariant derivatives are

∇µ(ω)εi ≡
(

∂µ +
1

4
ωµ

abγab

)

εi +
1

2
iAµεi + Vµj

iεj,

∇µzα = ∂µzα + gW I
µkα

I ,

∇µqX = ∂µqX + gW I
µkX

I . (2.52)

We included here the effect of a gauging in the vector multiplet sector by the Killing vector

kα
I describing the transformations under the gauge symmetry of the vector multiplet scalar

similar to the definition of kX
I for the hypermultiplet scalars.

The SU(2) connection Vµi
j is related to the quaternionic-Kähler SU(2) connection

and gets a contribution from the moment map when isometries of the quaternionic-Kähler

manifold have been gauged:

Vµi
j = ∂µqXωXi

j + gW I
µPIi

j . (2.53)

Aµ are the components of the one-form gauge field of the Kähler U(1):

A = − i

2

(

∂αKdzα − ∂ᾱKdz̄ᾱ
)

. (2.54)
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In the case of gauging in the vector multiplet sector, this is modified by a scalar moment

map similar to the SU(2) connection. The dressed graviphoton is given by

T−
µν = F−I

µν ImNIJXJ . (2.55)

2.6 Consistent reduction of supersymmetry

It is often important to reduce the number of supersymmetries of a given theory. This

is usually motivated by phenomenology as one would like in general to have the minimal

amount of supersymmetry (N = 1). They are many ways to realize a reduction of the

number of supersymmetries of a given theory. One can break supersymmetry directly by

introducing by hand supersymmetry breaking terms in the Lagrangian. Two other methods

that appear naturally in the study of string inspired supergravity theories are spontaneous

supersymmetry breaking and consistent reduction of supersymmetry [46 – 48].

In supergravity theories coming from string theory, spontaneous supersymmetry break-

ings arrive naturally from compactification with fluxes and/or torsion. In such a case, one

ends up with gauged supergravity theories (or with a superpotential in N = 1 supergrav-

ity) in which some of the gravitini become massive with masses coming from the fermionic

shifts associated with the scalar potential. Consistent truncations, on the other hand do

not require any fermionic masses, they consist of a reduction of the number of fields of

the theory (including some massless fields) while respecting the equations of motion of

the theory. It is then possible to get rid of some gravitini and supersymmetry generators.

Although they might appear quite artificial at first look from a purely supergravity point

of view, consistent reductions are naturally realized in string theory, for example by mod-

els containing orbifolds and/or orientifolds. Moreover some spontaneous supersymmetry

breaking are also consistent reduction in the sense that all solutions of the equations of

motion of the reduced theory are also solutions of the mother theory.

In a consistent truncation, any solution of the equations of motion of the reduced

theory correspond to a solution of the mother theory. If {φ} = {φr} ∪ {φT } are the fields

of the mother theory L, where {φr} are those that survive the truncation to the reduced

theory Lr and {φT } are the truncated field, the truncation ansatz is simply φT = 0. A

consistent truncation is such that the truncation ansatz commutes with the equations of

motion

Consistent truncation :
δ

δφ

(

L|φT =0

)

=

(

δL
δφ

)∣

∣

∣

∣

φT =0

, (2.56)

and therefore any solutions of the reduced theory is also a solution of the mother theory

Consistent truncation :
δLr

δφr
= 0 =⇒ δL

δφ
= 0. (2.57)

It is possible that a spontaneous supersymmetry breaking implies a consistent trunca-

tion, but this is not necessarily the case.
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2.7 N = 2 =⇒ N = 1 consistent truncations

Consistent truncation of supersymmetry in the context of supergravity is not a trivial task.

A N -extended supergravity theory admits N -gravitini and cannot be seen in general as a

special case of a N ′ < N supergravity theory. Indeed the extra (N −N ′) gravitini generate

couplings that are inconsistent with the constraints of a N ′ extended supergravity. Let us

for example illustrate a few examples of incompatibilities between N = 2 supergravity

theory and N = 1 supergravity:

• The graviphoton appearing in the supersymmetry transformation of the gravitini in

N = 2 supergravity. Such a term is inconsistent with the supersymmetry transfor-

mation of N = 1 supergravity.

• In N = 2 supergravity, nH hypermultiplets cannot be seen as 2nH chiral multiplets.

Indeed, the scalar fields of nH hypermultiplets define a quaternionic geometry and in

general a quaternionic manifold is not even a complex manifold and therefore does not

qualify to describe the geometry of N = 1 chiral multiplets as the latter is supposed

to be Kähler-Hodge.

• N = 2 vector multiplets. Here the scalar fields of the vector multiplets define a

special manifold. A special manifold is a Kähler-Hodge manifold and therefore one

would expect that nV N = 2 vector multiplets can be seen as nV gauge multiplets

of N = 1 supergravity together with nV chiral multiplets. However, this is not in

general the case. Indeed, the coupling matrix NIJ appearing in the kinetic terms of

N = 2 gauge fields is not restricted to be an holomorphic function whereas this is

mandatory in N = 1 supergravity coupled to gauge fields.14

The previous points illustrate some of the requirements that a consistent truncation of N =

2 supergravity to N = 1 supergravity should satisfy: the graviphoton should vanish, the

quaternionic-Kähler manifold should reduce to a Kähler-Hodge manifold and the coupling

matrix N should be holomorphic after the truncation.

The conditions ensuring a consistent truncation in supergravity have been analyzed

carefully in [46 – 48]. In particular we see that in a N = 2 =⇒ N = 1 consistent truncation,

at least half of the degrees of freedom have to be truncated. In the gravity multiplet, the

graviphoton and one gravitino have to be truncated. The quaternionic-Kähler manifold

has to admit a Kähler-Hodge submanifold in order to satisfy the constraints of N = 1

supergravity. A hypermultiplet is fully truncated or reduces to a unique chiral multiplet.

A vector multiplet can be completely truncated or reduces to a gauge or a chiral multiplet.

2.7.1 A dictionary of N = 2 =⇒ N = 1 consistent truncations

We shall only consider N = 2 =⇒ N = 1 consistent truncation in which we keep the first

gravitino but truncate the second one, that is

ψµ2 = ψ2
µ = ε2 = ε2 = 0. (2.58)

14The same argument shows that even in rigid supersymmetry, N = 2 and N = 1 supersymmetry are in

general not compatible.
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After a consistent truncation, the resulting N = 1 supergravity is such that

εL = ε1, ψµL = ψ1
µ, (2.59a)

Dα = −2g ImN−1|αβ(P0
β + P3

β), e
1

2
KW = −2gXβ(P 1

β − iP2
β), (2.59b)

λα
L = −λβ

2DβXα, fαβ = iNαβ . (2.59c)

To write these equations we have decomposed the N = 2 vector indices I as I → (α, α̃),

with α = 1, · · · , nG running over the nG gauge multiplets that survive the truncation to the

N = 1 theory, and α̃ = 0, nG + 1, · · · , nV over the complementary indices, which label the

chiral multiplets of the truncated theory coming from N = 2 vector multiplets. Here Dα,

W and fαβ are the D−term the superpotential and the kinetic functions of the reduced

N = 1 theory respectively. λα
L is the fermionic partner of the surviving gauge field after

the truncation.

Among the conditions for a consistent truncation let us mention the following

Tµν = 0, ω1
X = ω2

X = 0, (2.60)

where Tµν is the graviphoton and ωx
X is the SU(2)-connection of the quaternionic-Kähler

manifold.

The scalar manifold of the reduced N = 1 theory is a direct product MKH
V ⊗MKH

H where

MKH
V is the reduced manifold coming from the scalar manifold MV of vector multiplets

and MKH
H is a Kähler-Hodge submanifold of the quaternionic-Kähler manifold MH :

M = MV ⊗ MH =⇒ MKH = MKH
V ⊗ MKH

H . (2.61)

The U(1) connection of MKH
H is determined by ω3

X .

2.8 N = 1 FI terms from a N = 2 consistent truncation

As discussed in the introduction, in the context of N = 1 supergravity, constant Fayet-

Iliopoulos terms play an important role in cosmology and in the study of topological defects

and in particular for constructing potentials admitting cosmic string solutions of Nielsen-

Olesen type.

However as N = 2 supergravity theories do not admit Fayet-Iliopoulos terms in the

presence of hypermultiplets, it is not clear how these constant FI terms of N = 1 super-

gravity could be obtained from N = 2 supergravity. Indeed, as we have discussed in the

previous section, N = 1 and N = 2 supergravity theories are not necessary compatible.

However, starting from an N = 2 supergravity theory one can go to N = 1 by spontaneous

supersymmetry breaking or by a consistent truncation.

If we consider a consistent truncation in which we truncate the second gravitino, we

see from the dictionary of the previous section that a constant FI term can be generated by

a moment map with a constant P3. This would require defining a gauging of a symmetry

of the quaternionic-Kähler manifold.

Consider a Killing vector k1 of a quaternionic-Kähler manifold MH such that

Lk1
Jx = εxyzry

k1
Jz, (2.62)
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with rx
k1

= δx
3 . The moment is then

Px
k1

= ιk1
ωx +

1

2
δx
3 , (2.63)

if we gauge ξk1 and can have ιk1
ωx = 0 we have a candidate N = 2 gauging that can be

reduced to an N = 1 supergravity with a vanishing superpotential, and a D-term endowed

with a constant FI terms because D-term is proportional to P3
k1

since there is no gauging

along the special manifold:

D ∼ ξ (2.64)

Such a constant FI term that we obtain in the reduced N = 1 theory is coming from the

SU(2) compensator rx
k1

which is due to the non-triviality of the SU(2)-bundle. Ironically it

is the very same property that forbids the introduction of N = 2 FI terms in supergravity

coupled to hypermultiplets!

The mechanism that we have just discussed was first presented in [18] in a model

where N = 2 supergravity is coupled to one vector multiplet and one chiral multiplet.

After truncation it yields a N = 1 supergravity theory coupled to a gauge and a chiral

multiplet and admitting a D-term potential endowed with a constant FI term. The FI term

was used to construct the first example of a half-BPS cosmic string solutions of N = 2

supergravity.

Using the property of consistent truncations, the construction of [18] can be described

as the embedding of a N = 1 half-BPS D-term cosmic string solution in a N = 2 super-

gravity theory. Indeed, any solution of the reduced N = 1 theory is also a solution of

the mother N = 2 theory. One can alternatively consider the use of consistent truncation

in [18] as a trick to simplify the N = 2 BPS equations so that they look similar to those

of a N = 1 supergravity model.

2.8.1 A simple example

We shall now present a realization of the mechanism discussed above in a simple exam-

ple. In this example, we shall focus on the hypermultiplets. The rest of the paper will

emphasize the role of the special geometry. For the quaterionic-Kähler manifold, we take

a quaternionic space of quaternionic dimension one:

SO(4, 1)

SO(4)
=

Sp(1, 1)

Sp(1) · Sp(1)
, (2.65)

with real coordinates (b0 = eh, b1, b2, b3) and admitting the metric

ds2 =
1

(b0)2

[

(db0)2 + |~db|2
]

. (2.66)

The vielbein and SU(2) connection are given by

f =
1√
2 b0

(db0
2 + i ~db · ~σ), ~ω = −

~db

b0
. (2.67)
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The isometry

k1 = 2b1 ∂

∂b2
− 2b2 ∂

∂b1
, (2.68)

rotates the connection ωx as

Lk1
ωx = 2εxyzωzδy

3 = −∇δx
3 , (2.69)

from which we identify the SU(2)-compensator ry
k1

= 2δx
3 . We can then compute the

moment map

Pk1
= ιk1

ω +
1

2
rk1

=
1

b0







b2

−b1

0






+







0

0

1






. (2.70)

Along the quaternionic-Kähler manifold, the extremum of the scalar potential is at

b1 = b2 = 0, (2.71)

leaving the constant moment map

Pk1
|b1=b2=0 =







0

0

1






. (2.72)

The quaternionic-Kähler manifold SO(4,1)
SO(4) reduces to the submanifold SO(2,1)

SO(2)

SO(4, 1)

SO(4)
=⇒ SO(2, 1)

SO(2)
, (2.73)

with metric

ds2 =
1

(b0)2
[(b0)2 + (b3)2]. (2.74)

Defining φ = b3 − ib0 we have a Kähler-Hodge metric

ds2 =
dφd̄φ

(Im φ)2
, (2.75)

admitting the Kähler potential K = −2 log[i(φ − φ̄)].

We see that the quaternionic-Kähler manifold SO(4,1)
SO(4) (which is not even a complex

manifold) can be consistently reduced to a Kähler-Hodge manifold SO(2,1)
SO(2) .

In the present case, if we gauge

k = ξk1, (2.76)

where k1 is given in equation (2.68) we obtain after truncation (b1 = b2 = 0) an N = 1

supergravity with vanishing superpotential and a D-term endowed with a constant FI term,

using (2.59) we have:

D = −2gP3 = −2gξ. (2.77)

As we see the coefficient ξ in (2.76) determined the value of the constant FI term. This

is because k1 has been normalized such that the third component of the moment map is

equal to one (P3
k1

= 1). Since the Killing vector k1 vanishes identically, there is no gauge

symmetry in the reduced N = 1 theory. But if we gauge a linear combination k = ξk1 + k2

such that k2 acting on b0 and b3 we can end up with an N = 1 theory with an Abelian

gauging and a constant Fayet-Iliopoulos term as we shall discuss in the next section.
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2.8.2 Engineering cosmic strings in N = 2 supergravity

Once we can engineer a gauging in N = 2 supergravity yielding FI terms in a reduced

N = 1 supergravity, it is not difficult to identify a gauging that generates a N = 2

potential admitting cosmic string solutions of the Nielsen-Olesen type. What we need is

to have a U(1) compact symmetry surviving the reduction and gauging the Higgs field of

the string.

Since we work with a consistent truncation, if the reduced theory admits cosmic string

solutions, they whould also be solutions of the mother N = 2 supergravity equations of

motion. In this spirit, we first identify a Killing vector in the reduced N = 1 theory which

generates a compact U(1) symmetry. We then lift up that symmetry to the quaternionic-

Kähler manifold.15

Let us illustrate the point using the previous example. The reduced Kähler-Hodge

manifold SO(2,1)
SO(2) admits a unique compact symmetry

δφ = −g(φ2 + 1). (2.78)

The cosmic string solutions are based on the D-term potential

D ∝ −2g

( |φ|2 + 1

Im φ
− ξ

)

. (2.79)

The vacuum is a circle if we take (ξ > 2) 16

D = 0 =⇒ (b3)2 + (b0 − ξ

2
)2 =

ξ2 − 4

2
. (2.80)

We then gauge in the mother N = 2 supergravity theory the Killing vector

k = ξk1 + k2, (2.81)

where

k2 = (φ2 + 1)
∂

∂φ
+ · · · (2.82)

is an uplift of the compact symmetry of SO(2,1)
SO(2) to the quaternionic-Kähler manifold SO(4,1)

SO(4) :

the dots (· · · ) stand for terms that vanish in the reduction.

In a sense, we can say that the method that we have presented here is a consistent

embedding of an N = 1 theory with a D-term endowed with a constant FI term into a

gauged N = 2 supergravity. The cosmic string solutions of the reduced theory are also

valid solutions of the mother theory. Thus we also have a consistent embedding of a cosmic

string solution of a N = 1 supergravity theory into N = 2 supergravity.

We note that the gauge symmetry of the reduced symmetry admits a unique fixed

point

φ = i, (2.83)

15This is always possible as the sector of the scalar manifold of the N = 1 coming from the quaternionic-

Kähler manifold is a completely geodesic submanifold of the former. Therefore any symmetry of the reduced

manifold can be lifted up to a symmetry of the mother manifold.
16ξ < 2 is excluded as b0 = eh > 0.
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where the D-term is such that

D ∝ 2g(ξ − 2). (2.84)

We shall see later on that the deficit angle of the cosmic string is proportional to (ξ−2).

3. The model

In this section we describe the model. We shall gauge a unique Abelian Killing vector of

the quaternionic manifold. As for any Abelian gauging in N = 2 supergravity, the scalars

of the vector multiplet are neutral as they transform in the adjoint representation of the

gauged group.

We will consider a simple model involving the minimum number of scalar fields re-

quired to have a cosmic string with a N = 2 potential bounded from below using the

ST [2, n] manifold. As we shall see this will require n ≥ 1 as the two first lines of the

symplectic section are related to the graviphoton and for gauging of the graviphoton the

scalar potential is not guaranteed to be bounded from below. Moreover, we would like

to define a string configuration in N = 2 supergravity which is compatible with N = 1

supergravity. In such a case, the graviphoton has to decouple on the string configuration.

On the quaternionic side, we take the scalar manifold to be SO(4,1)
SO(4) . The same solution

can be constructed using any normal quaternionic manifold. However for keeping the

geometry as simple as possible we shall restrict ourselves to SO(4,1)
SO(4) . This will also enable

us to compare our results with those of [18].

The choice of the Killing vector is a crucial part of the construction. For the specific

quaternionic geometry that we consider it is explained in [18]. The treatment for a generic

homogeneous quaternionic manifold will be presented in [59].

3.1 The very special Kähler manifold
SU(1,1)

U(1) × SO(2,n)
SO(2)×SO(n) in the Calabi-Vesentini

section

We consider the Kähler-Hodge manifold

ST [2, 2 + n] =
SU(1, 1)

U(1)
× SO(2, 2 + n)

SO(2) × SO(2 + n)
, (3.1)

We will work in the Calabi-Vesentini basis defined by the holomorphic section:

v =

(

ZI

FI

)

, with ZI =







1
2(1 + y2)

i12 (1 − y2)

ya






, and FI = SηIJZJ , (3.2)

where a = 1, · · · , n and y2 = yaya and ηIJ =
(

2

− n

)

. The fields S and ya parametrize

respectively the manifold SU(1,1)
U(1) and SO(2,n)

SO(2)×SO(n) . The Calabi-Vesentini basis does not

admit a prepotential, but can be rotated to a symplectic section which can be obtained

from the cubic prepotential

F (S, y) = −1

2
Syaya. (3.3)
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The kähler potential for the Calabi-Vesentini section is

K = − log
[

i(S − S̄)
]

− log

[

1

2

(

1 − 2ȳaya + |yaya|2
)

]

, (3.4)

and the coupling matrix of the vector field

NIJ = (S − S̄)
ZI Z̄J + Z̄IZJ

Z̄TηZ
+ S̄ηIJ . (3.5)

The metric is given as usual by the second derivative of the Kähler potential

gSS̄ =
1

(2 Im S)2
, gbc̄ = 2

(δbc̄ − 2ybȳc̄)

1 − 2ȳaya + |yaya|2 + 4

[

ȳb − yb(ȳāȳā)
]

[yc̄ − ȳc̄(yaya)]

(1 − 2ȳaya − |yaya|2)2
(3.6)

In the example we shall consider in this paper, we will restrict ourselves to the case

n = 1, as it requires the minimum amount of fields: two complex scalar fields S and y and

three vector fields W0,W1,W ≡ W2. This specific case is immediately generalized to any

n. In this case the metric for the scalar manifold MV and the coupling matrix N simplify

to:

gSS̄ =
1

(2 Im S)2
, gyȳ =

2

(1 − yȳ)2
N =

(

S 2

−S̄

)

(3.7)

3.2 The quaternionic manifold
SO(4,1)
SO(4)

The quaternionic manifold of quaternionic dimension one

SO(4, 1)

SO(4)
, (3.8)

has a very simple quaternionic stucture which can be derived from the vielbein

f =
1√
2

(

dh + ie−hdbxσx
)

, (3.9)

where x = 1, 2, 3 and h, bx are real fields. Its metric and SU(2)-connection are respectively

ds2 = (dh)2 + e−2h
[

(db1)
2 + (db2)

2 + (db3)
2
]

, (3.10)

ωx = −1

2
e−hdbx. (3.11)

3.3 Killing vector and moment map

We will consider the same Abelian gauging as in [18]. With our choice of special geometry,

on the submanifold y = 0, the graviphoton, (2.55), depends only on W0 and W1. As we

would like to put the graviphoton to zero on the string configuration we shall gauge the

vector W 2
µ .

The U(1) symmetry that we gauge is [18]:

k =











4b3

4b1b3

4b2b3

2
[

b2
3 − e2h + 1 − b2

1 − b2
2

]











+ ξ











0

−2b2

2b1

0











, (3.12)

– 26 –



J
H
E
P
0
3
(
2
0
0
7
)
0
7
9

where we have arranged the tangent vector in the order ( ∂
∂h , ∂

∂b1
, ∂

∂b2
, ∂

∂b3
). Although the

previous Killing vector seems complicated at first sight it is defined in a precise and simple

way on any symmetric normal quaternionic manifold using a solvable parametrization of

the quaternionic manifold [59]. The moment map corresponding to k reads

Px =







−2b2 − 2b1b3e
−h

2b1 − 2b2b3e
−h

−e−h
[

(b3)
2 + 1 − (b1)

2 − (b2)
2
]

− eh






+ ξ







e−h b2

−e−h b1

1






. (3.13)

3.4 The scalar potential

In the Calabi-Vesentini symplectic section we have for any n:

U IJ − 3X̄IXJ = − 1

i(S − S̄)
ηIJ . (3.14)

Since ImS < 0, it follows that the scalar potential is always positive and bounded from

below in the Calabi-Vesentini basis, provided that we gauge the vector WI with ηII negative.

This corresponds to the gauge field associated with the coordinate y.

We shall gauge a unique Killing vector kX of the hypermanifold. With our choice the

scalar potential is then

V = 4e−ρk2 yȳ

(1 − yȳ)2
+ 2e−ρPxPx, (3.15)

where k2 = gXY kXkY .

The previous scalar potential has the following properties:

1. The scalar potential V is bounded from below

V ≥ 0, (3.16)

this is in sharp contrast to the case of the minimal special geometry where the scalar

potential was not bounded from below and could be positive, negative or vanish

depending on the value of the scalar fields.

2. y = 0 is a critical point of the scalar potential V:

∂V
∂y

|y=0 = 0. (3.17)

3. The scalar potential V has a runaway behaviour in the dilaton field ρ:

V ∝ e−ρ. (3.18)

4. A half-BPS cosmic string solution

In this section we will present a 1/2-BPS cosmic string solution of the full N = 2 super-

gravity action. First we shall study the Minkowski vacua of the scalar potential. Next we

will specify the field configuration characterizing the consistent reduction, and finally we

will compute the BPS equations for the string configuration and analyze some of the string

properties.
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Minkowski vacua

No Minkowski vacuum ξ ≤ 0

y = 0, Φ = ξ
2 i, |Φ̃|2 = 1 − ξ2

4 0 < ξ < 2

Φ = i, Φ̃ = 0 2 = ξ

y = 0, |Φ|2+1
Im Φ = ξ, Φ̃ = 0 2 < ξ

Table 3: Type of vacua of the scalar potential for different values of the parameter ξ. Non-singular

cosmic string solutions are only possible for 2 < ξ.

4.1 Minkowski vacua of the scalar potential

The scalar potential is a sum of squares. It is easy to compute all its Minkowski vacua by

looking at the zeroes of the different terms:

V = 0 =⇒ (k = 0 or y = 0) and PxPx = 0. (4.1)

To study the scalar potential, it is useful to introduce the following definitions:

Φ = −b3 + i eh , Φ̃ = b1 + i b2. (4.2)

which yield

PxPx =
4

(Im Φ)2

∣

∣

∣

∣

Φ − ξ

2
i

∣

∣

∣

∣

2

|Φ̃|2 +

(

|Φ̃|2
Im Φ

− |Φ|2 + 1

Im Φ
+ ξ

)2

(4.3)

(4.4)

It is then easy to find

PxPx = 0 =⇒















Case I : Φ = ξ
2 i, |Φ̃|2 = 1 − ξ2

4 , (0 < ξ < 2),

Case II : |Φ|2+1
Im Φ = ξ, Φ̃ = 0, (2 ≤ ξ).

(4.5)

k = 0 has a unique solution given by the origin of the quaternionic manifold:

k = 0 =⇒ b3 = b2 = b1 = h = 0 ⇐⇒ Φ = i and Φ̃ = 0. (4.6)

Putting things together we have a Minkowski vacuum for each value of 0 < ξ:

When ξ ≤ 0 there are no Minkowski vacua. This implies in particular that for a

gauging with ξ ≤ 0, all the extrema of the potential are de Sitter vacua. However, the

potential will not have an absolute minimum (for finite values of the fields) because of its

runaway behaviour in the dilaton (3.18).

We shall use table 3 to explain our choice for the cosmic string configuration. In order

to have a cosmic string solution we need to have a circle in the vacuum manifold. If we want

the string configuration to be compatible with a consistent reduction of supersymmetry,
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we shall have to truncate some of the scalar fields of the quaternionic manifold to end up

with a Kähler-Hodge submanifold which is completely geodesic.

The appropriate choice of gauging to construct a cosmic string of the Nielsen-Olesen

type is ξ > 2. Indeed, in that case, the vacuum is a circle defined by |Φ|2+1
Im Φ = ξ. The Higgs

field of the cosmic string is Φ. We shall keep y = Φ̃ = 0 not only in the vacuum but for all

the string solutions in order to have a consistent truncation.

In the case 0 < ξ < 2, we also have a circle in the vacuum. However, Φ = ξ
2 i does

not define a consistent truncation of the quaternionic manifold. To see this note that a

gauge transformation 2.30 with the killing vector k given by (3.12) does not respect this

condition for every value of Φ̃.

In the case where ξ = 2, the vacuum is just a point and therefore there is no room for

a cosmic string solution of the Nielsen-Olesen type.

4.2 Consistent truncation

The set of conditions that we impose on the bosonic fields defining the consistent reduction

are:

Consistent reduction ansatz:















y = 0,

Φ̃ = 0,

W0 = W1 = 0.

(4.7)

The condition y = Φ̃ = 0 was explained in the previous section. The conditions

W0 = W1 = 0 ensure that the graviphoton (see equation (2.55)) vanishes as it should be

in a consistent truncation to N = 1 supergravity. Indeed, the graviphoton appears in the

supersymmetry transformations of the gravitini in N = 2 supergravity (2.51) but is absent

in those of the gravitino of N = 1 supergravity.

In this field configuration the quaternionic and special Kähler manifold reduce as follow:

MSK ×MQ
y=Φ̃=0
=⇒

(

SU(1, 1)

U(1)

)

S

×
(

SU(1, 1)

U(1)

)

Φ

'
(

SO(2, 2)

SO(2) × SO(2)

)

S,Φ

, (4.8)

with Kähler potential

K = − log
[

−i(S − S̄)
]

− 2 log
[

−i(Φ − Φ̄)
]

. (4.9)

Here S is an axion-dilaton field and Φ is the scalar field whose Higgs mechanism gener-

ates the cosmic string. Once we impose the condition Φ̃ = 0, the Killing vector of the

quaternionic manifold that we have gauged only acts on Φ as:

δΦ = −2g(Φ2 + 1), (4.10)

which corresponds to the compact U(1) symmetry of
(

SU(1,1)
U(1)

)

Φ
.
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4.3 Truncated N = 1 Lagrangian and supersymmetry transformations

The bosonic sector of the N = 2 supergravity action is:

e−1L =
1

2
R +

1

4
(Im N )IJF IµνF J

µν +
e−1

8
(Re N )IJεµνρσF I

µνF J
ρσ

− 1

(2 Im S)2
∂µS∂µS̄ − 2

(1 − yȳ)2
∂µy∂µȳ

− 1

2
gXY ∇µqX∇µqY +

2g2

Im S

[

2k2 yȳ

(1 − yȳ)2
+ PxPx

]2

, (4.11)

where:

(Im N )IJ = Im S 3 (Re N )IJ =

(

Re S 2

−Re S,

)

(4.12)

and the metric gXY is given by (3.10). The hyperscalars are organized as qX = (h,~b). The

covariant derivatives are defined by (2.31) and the killing vector (3.12) is gauged by W 2.

The square of the moment map, PxPx is given in (4.4).

After setting to zero the truncated fields (4.7) and imposing Re(S) = 0 the bosonic

sector of the N = 1 reduced action reads:

e−1L =
1

2
R +

ImS

4
FµνFµν − 1

+

e−1

8
ReSεµνρσFµνFρσ

− 1

(2 Im S)2
∂µS∂µS̄ − 1

2(Im Φ)2
∇µΦ∇µΦ̄ − 2

g2

Im S

[ |Φ|2 + 1

Im Φ
− ξ

]2

, (4.13)

where

∇µΦ = ∂µΦ − 2gWµ

(

Φ2 + 1
)

. (4.14)

In the truncated theory the following relations hold:

Sij = T−
µν = NS

ij = N iA = 0, (4.15a)

eK =
1

− Im S
, (4.15b)

DSXI =
e

3

2
K

4







−i

1

0






, DyaXI = eK/2δI

a, (4.15c)

Vi
j = i(ω3 + gWP3)i

j , (4.15d)

Ny
ij = −eK/2P3

ij , (4.15e)

A = − i

4

dS + dS̄

Im S
. (4.15f)

The previous relations are useful to compute the supersymmetry transformations of
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the fermions from equation (2.51):

δψ1
µ =

(

∂µ+
1

4
ωµ|abγ

ab+
1

2
iAµ+

1

2
iAB

µ

)

ε1, δψ2
µ =

(

∂µ+
1

4
ωµ|abγ

ab+
1

2
iAµ−

1

2
iAB

µ

)

ε2,

δλy
2 = −e

K
2

2
(Im S)F12γ

12ε1 − ig e
K
2 P3 ε1, δλy

1 =
e

K
2

2
(Im S)F12γ

12ε2 − ig e
K
2 P3 ε2,

δλS
1 = /∇Sε1, δλS

2 = /∇Sε2,

δζ1 =

√
2

4 Im Φ
/∇Φε1, δζ2 = −

√
2

4 Im Φ
/∇Φ̄ε2. (4.16)

In these equations AB
µ is the quaternionic matter connection of the gravitini:

AB
µ = 2ω3

µ + 2gWµP3 =
22

(

∂µΦ + ∂µΦ̄
)

4 Im Φ
+ 2gWµP3. (4.17)

and Aµ is the U(1) connection of the special Kähler manifold.

The main difference with the supersymmetry transformations obtained in [18] on the

string configuration is the presence of the axion-dilaton field S coming from the special

geometry and parametrizing the manifold SU(1,1)
U(1) . The gaugini λS

i and the U(1) connection

A of the axion-dilaton scalar manifold do not distinguish between the two supersymmetry

transformations:

• In the supersymmetry transformations of the gravitini fields, the U(1) connection A

appears with the same charge for both transformations whereas the matter connection

AB (coming from the SU(2) of the hypermultiplet) comes with opposite charge for

the supersymmetries.

• The axion-dilaton field S enters in the same way in the supersymmetric transfor-

mations of the gaugini λS
i in contrast to the way Φ appears in the supersymmetric

transformation of the hyperini.

This difference of behaviour will be more clear in the next section where we analyze

the different BPS projectors obtained from the BPS equations.

4.4 Profile of the string

The BPS equations are obtained by setting to zero the supersymmetry transforma-

tions (4.16).

In appendix A, we show that a half-BPS solution for a cosmic string solution with

magnetic flux requires that ε1 and ε2 should have different chirality on the cosmic string

world sheet:

BPS projector: γ12ε1 = ∓iε1, γ12ε2 = ±iε2. (4.18)

The integrability condition is

Rµν 12 ± FB
µν = 0. (4.19)
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Using the previous projector the BPS equations read
(

∂µ ∓ i

2
ωµ|12 +

i

2
AB

µ

)

ε1 = 0,

(

∂µ ± i

2
ωµ|12 −

i

2
AB

µ

)

ε2 = 0,

∓F12 + D = 0,

(∇1 ± i∇2)Φ = 0, (4.20)

where D = 2 g
Im SP3 = −2ge−ρP3. In appendix A, it is also shown that the BPS equation

for the axion-dilaton field implies that it has to be a constant.

The BPS equations (4.20) are the same as those obtained in [18] modulo the factor of

e−ρ in the definition of the D-term.

Since the coupling of the Higgs field to the gauge field is non standard (2.31), it is

difficult to see what would be the field configuration that corresponds to a cosmic string.

To simplify the analysis we define, as in [18], the following field:

u =
i − Φ

i + Φ
. (4.21)

Under a gauge transformation the field u transforms as:

δu = 2giu, (4.22)

which corresponds to a change of phase. Thus the winding of the phase of u is the one

inducing the magnetic flux of the string.

In order to solve the BPS equations we will use the following time independent ansatz:

u = f(r)eimθ Wθ = Wθ(r). (4.23)

It represents a straight cosmic string of winding m along the z-axis.

Where we have used cylindrical coordinates (t, z, r, θ).

We take the space-time metric to be of the form:

ds2 = −dt2 + dz2 + dr2 + C2(r)dθ2. (4.24)

The BPS equations for the profile of the string are:

f ′(r) = ± f(r)

C(r)
(m − 4gWθ(r)) , W ′

θ(r) = ±C(r)D(r), C ′(r) = 1 ∓ ÃB
θ (r), (4.25)

with

ÃB
θ = 2m

f2

1 − f2
+ eρWθD and D = −2ge−ρ(2

1 + f2

1 − f2
− ξ). (4.26)

From the BPS equations we find the asymptotic behavior of the profile functions. It

is similar to the cases of [9, 18].

In the case r → 0 we have:

f(r) ∼ r±n, C ∼ r, Wθ(r) ∼ ±g(ξ − 2)r2. (4.27)
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In the opposite limit, r → ∞:

f(r) =⇒
√

ξ − 2

ξ + 2
, Wθ(r) =⇒ m

4g
, (4.28)

and the metric is given by

ds2 = −dt2 + dz2 + dr2 + r2

[

1 ∓ 1

2
m(ξ − 2)

]2

dθ2. (4.29)

The upper or lower sign apply for positive or negative winding number m, respectively.

At r =⇒ ∞, the string creates a locally-flat conical metric with a deficit angle propor-

tional to ξ−2. The energy of the string per unit length can be computed as in [9, 18]. One

finds that the only non-vanishing contribution comes from the Gibbons-Hawking surface

term [58]:

µstring = −
∫

dθ C ′

∣

∣

∣

∣

r=∞

+

∫

dθ C ′

∣

∣

∣

∣

r=0

= ±πm(ξ − 2) > 0. (4.30)

Note also that the full N = 2 supersymmetry is restored asymptotically.

4.5 The fate of the axion-dilaton field

The constant value of the axion-dilaton field is not fixed by the BPS equations nor by the

scalar potential. The mass per unit length of the string is also independent of the value of

the axion-dilaton field (4.30). The dilaton fixes the overall length scale of the configuration

in the following sense. There are two natural lengths in the solution given by the inverse

of the masses of the Higgs and the gauge field, and they are both functions of the dilaton

field:

m2
W ∝ − 1

Im S
, m2

Φ ∝ − 1

Im S
, (4.31)

so that the corresponding length scales are

l2W ∝ − Im S, l2Φ ∝ − ImS. (4.32)

Suppose we have a solution to the BPS equations given by the profile functions f(r),

Wθ(r), C(r) and ρ. Then is easy to check that the functions f(λr), Wθ(λr), C(λr)/λ and

ρ−2 log(λ) also satisfy the BPS equations for any real λ > 0. From here is obvious that the

value of the dilaton determines the length scales in the transverse direction to the string,

in particular the core radius.

This situation looks similar to the case of semilocal strings [63], were there is also a

one parameter family of solutions with equal energy and different core radii. In that case

finite energy perturbations can excite the zero mode connecting solutions within the same

family, leading to the spread of the magnetic flux and eventually to the disappearance of

the strings. This is not going to occur in our model. In order to go from one solution to

a different one, the dilaton has to change its value everywhere in the plane transverse to

the string. The kinetic energy needed in order to excite the value of the dilaton globally

diverges, and this implies that, once the system has chosen a given value for the dilaton,

finite energy perturbations cannot drive the system to a solution with a different value of

S. The radius of the string will remain unchanged.
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5. Discussion

As a generalization of the work done in [18], we have enlarged the family of N = 2

supergravity actions which allow the embedding of N = 1 supergravity actions containing

a D-term potential and a constant FI term. We extend the result of [18] to a class of special

geometries more familiar in compactifications of string theory. We are using here a “very

special Kälher geometry” characterized by a cubic prepotential, instead of the minimal

special geometry used in [18]. To be specific we take the special manifold to be:

ST [2, n] ≡ SU(1, 1)

U(1)
× SO(2, n)

SO(2) × SO(n)
,

in the Calabi-Vesentini basis (3.2), which is related to the cubic prepotential by a symplectic

rotation [45, 49].

This choice of special geometry has two important consequences. An axion-dilaton

field, S = a − ieρ, is present in the reduced N = 1 theory after truncation from N = 2.

Moreover, it is possible to define a gauging for which the scalar potential is bounded from

below. However, it has a runaway dependence on the dilaton:

V ∝ e−ρ.

As an application, we have shown how to construct a half-BPS cosmic string solution

from a N = 2 supergravity action in D = 4. Following [18] we have used a string ansatz

compatible with a consistent truncation from N = 2 to N = 1. In order to obtain the

scalar potential we have gauged the same isometry used in [18]. We have found that the

BPS equations imply that the axion-dilaton has to be simultaneously holomorphic and

anti-holomorphic, which can only be satisfied if it is a constant:

S = Constant, ImS < 0.

Despite the runaway behavior of the potential, we have proved that all the string solutions

have the same energy per unit length, regardless of the value of the dilaton, and it is given

by the Gibbons-Hawking surface term [57, 35, 18]. The value of the dilaton fixes the masses

of the Higgs and the gauge field and, hence, also the radius of the string. We have argued

that the system can not evolve between two solutions with different values of the dilaton,

since this would require an infinite amount of energy. Thus, once the strings are formed

their radii remain fixed.

Observations of the timing of milisecond pulsars give the constraint µstring . 10−7 [26].

However this constraint depends on the specific model used to calculate it, what leads to

a considerable uncertainty. This implies for our model that the FI term has to satisfy:

0 < 2πm(ξ − 2) . 10−7,

where the lower bound is coming from the study of Minkowski vacua in section 5.1.

An important issue which remains to be discussed is the stability of these strings within

the full N = 2 theory. It is far from clear that these strings are stable against perturbations

of the truncated fields. Finding such an instability would be an interesting result, since it

would provide an example of an unstable BPS solution.
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A. Integrability condition and BPS projector

The integrability conditions of the gravitini BPS equations are:17

(Rµν 12γ
12 + iFK

µν + iFB
µν)ε1 = 0, (Rµν 12γ

12 + iFK
µν − iFB

µν)ε2 = 0, (A.1)

To compute the projector we use the following result:18

(a + γ12b)ε = 0

or

(aγ1 + bγ2)ε = 0











ε 6=0,a6=0
=⇒ a ∓ ib = 0, γ12ε = ∓iε. (A.2)

Using the previous method we obtain

∓Rµν 12 + (FK
µν + FB

µν) = 0, γ12ε1 = ∓iε1, (A.3a)

∓Rµν 12 + (FK
µν − FB

µν) = 0, γ12ε2 = ∓iε2,

∓F12 + D = 0, γ12ε1 = ∓iε1, (A.3b)

∓F12 − D = 0, γ12ε2 = ∓iε2,

(∂1 ∓ i∂2)S = 0, γ12ε1 = ∓iε1, γ12ε2 = ∓iε2, (A.3c)

∗(∇1 ∓ i∇2)Φ = 0, γ12ε1 = ∓iε1, (A.3d)

(∇1 ∓ i∇2)Φ̄ = 0, γ12ε2 = ∓iε2,

17The integrability conditions of the gravitini are obtained as usual by taking the commutator of two

supersymmetries and using the relation

[∇µ,∇ν ] = Rµν .

We shall name FK the curvature of the special geometry U(1) connection A and F B the curvature of the

connection AB .
18Given two complex variables a and b and a spinor ε, we have

(aγ
1 + bγ

2)ε = 0 =⇒ (aγ
1 + bγ

2)2ε = 0 =⇒ (a2 + b
2)ε = 0

ε6=0

−→ a ∓ ib = 0.

Thus:

(aγ
1 + bγ

2)ε = 0
a 6=0

=⇒ (γ1 ∓ iγ2)ε = 0,
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where D = 2 g
Im SP3 = −2ge−ρP3.

Equations (A.3b) are the integrability conditions for the gravitini BPS equations. They

imply that FK (resp. FB ) vanishes if ε1 and ε2 have opposite (resp. the same ) chirality

on the string world sheet:

γ12ε1 = ∓iε1 and γ12ε2 = ∓iε2 =⇒ FB = 0,

γ12ε1 = ∓iε1 and γ12ε2 = ±iε2 =⇒ FK = 0,
(A.4)

Equations A.3 are compatible in a non-trivial situation (that is for F12 6= 0 and D 6= 0) if

and only if ε1 and ε2 have different chirality on the string world sheet as:

γ12ε1 = ∓iε1 and γ12ε2 = ∓iε2 =⇒ F12 = D = 0,

γ12ε1 = ∓iε1 and γ12ε2 = ±iε2 =⇒ ∓F12 − D = 0.
(A.5)

Equations (A.3c) imply that S is a constant if ε1 and ε2 have different chirality whereas

S is holomorphic or anti-holomorphic on the plane perpendicular to the axis of the string

when ε1 and ε2 have the same chirality on the world sheet:

γ12ε1 = ∓iε1 and γ12ε2 = ∓iε2 =⇒ (∂1 ∓ ∂2)S = 0,

γ12ε1 = ∓iε1 and γ12ε2 = ±iε2 =⇒ S = Constant,
(A.6)

Finally the hyperini BPS equations are related by complex conjugation. It follows that

if ε1 and ε2 have different chirality, Φ is covariantly holomorphic on the plane perpendicular

to the string axis. If they have the same chirality it is at the same time holomorphic and

anti-holomorphic and therefore constant:

γ12ε1 = ∓iε1 and γ12ε2 = ±iε2 =⇒ (∇1 ∓ i∇2)Φ = 0,

γ12ε1 = ∓iε1 and γ12ε2 = ∓iε2 =⇒ Φ = Constant.
(A.7)

As we are interested in a cosmic string solution involving a magnetic flux (F 6= 0) and

a non-trivial scalar field Φ (6= Constant) we shall take the projector which ensures that ε1

and ε2 have different chirality on the string world sheet:

BPS projector: γ12ε1 = ∓iε1, γ12ε2 = ±iε2. (A.8)

If follows that the axion-dilaton is a constant on the string configuration and that the U(1)

connection (A) of the special geometry and its curvature FK both vanish identically:

A = FK = 0. (A.9)
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